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Abstract. We propose tools to probe the nature of attractors in dynamical systems. These 
include the activity distribution, the evolutions of the state damage, activity damage and temporal 
correlation damage. When they are used to study the retrieval amctors in dilute &symmetric 
neural networks. a m i t i o n  from a pmially frozen phase to an unfrozen phase is found far 
networks mined with sufficienfly noisy data near storage satuntion, and Utis confirms that the 
retrieval attractors are more chaotic in this case. We are also able to demonstrate that the 
retrieval amactors in dilute asymmetric n e d  networh are not clouds of attractors, but consist 
of a single chaotic attractor for each stored pattern. Fwihermore, they facilitate the device 
of effective freezing pmeedures, which significantly improve the quality of retrieval in neural 
networks. 

1. Introduction 

The application of statistical mechanical techniques to the study of dynamical systems is 
well illustrated by its contributions to the study of neural networks [1-4]. Such studies gain 
increasing importance with VLSl implementations of neural networks becoming increasingly 
available. In the retrieval phase the network dynamics drives the system to an attractor 
which is often described by an order parameter specified by the overlap of the network 
state with the pattern to be retrieved, analogous to the magnetization order parameter in 
spin systems. This order parameter vanishes continuously [3,5] or discontinuously [4,5] in 
the retrieval to non-retrieval transition. However, besides its being specified by the overlap, 
much less is known about the nature of the attractors in neural networks, and possibly in 
similar dynamical systems. 

The description of the attractor may be simpler for dynamical spin systems with 
symmetric weights ( J i j  = JjO. In these systems the attractor at zero temperature corresponds 
to the ground state of an energy function, and the attractor state is a fixed point in the 
phase space. On the other hand, for systems with non-symmetric weights the attractor may 
be a fixed point, a limit cycle or becomes chaotic in the phase space, and the overlap 
order parameter provides no information to distinguish these cases. While the number of 
metastable states have been calculated in some systems [ 6 ] ,  they only provide information 
on the possible fixed point attractors, but attractors of more extended structures remain 
unprobed. 

In this paper we further extend the previously proposed notions of damage evolution [3] 
and activity distribution [7. SI to probe the nature of attractors in general complex dynamical 
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systems, as introduced in section 2 and detailed in sections 3 to 6. They are quantities of 
interest applicable to both simulation and analytical approaches to network dynamics. In 
this paper we illustrate their applicability to an exactly solvable case, namely the case of 
dilute asymmetric neural networks [3]. 

As a consequence, we are able to demonstrate that the retrieval attractors in dilute 
asymmetric neural networks are not clouds of attractoors as previously proposed 131, but 
consist of a single chaotic attractor for each stored pattern. Furthermore, while previous 
studies on the activity distribution are limited to dilute asymmetric networks in which the 
synaptic weights are simple Hebbian [7,8], we demonstrate in section 4 that they can be 
generalized to dilute asymmetric networks with arbiii-ary synaptic prescription, provided 
that the aligning field distribution [9-1 I ]  is known. This allows us the freedom to explore 
a wide class of networks, of which the simple Hebbian case [7,8] and the maximally stable 
network [9-111 are only particular cases. For instance, we may tune the synaptic weights 
so that the basins of the retrieval attractors may be wide and interfering, or narrow and 
with more retrieval precision; the width of the basins being conveniently controlled by the 
amount of random errors present in the training data of the network [IZ]. 

It turns out that by considering the activity distribution, we will observe a transition from 
a partially frozen phase to an unfrozen phase when the number of stored patterns increases. 
We will also see that the presence of the unfrozen phase is a manifestation of wide and 
interfering basins of attraction, in contrast to the absence of this phase for the case of narrow 
and more precise basins. This observation is consistent with the increase of associativity, 
and the decrease of retrieval precision, storage capacity and selectivity for networks whose 
basins are tuned by the training process to have increasing width and interference 1121. 

The study of the activity distribution leads to a very useful application as described in 
section I ,  namely that by averaging the evolving network states over an extended period in 
the amactor, the stored patterns are retrieved much better. Remarkably, when the pattern bits 
are retrieved by clipping the activity, this clipped activity undergoes a first-order transition 
to non-retrieval in dilute Hebbian networks, in contrast to the second-order transition for 
instantaneous overlap as previously reported [3]. This sheds new light on the importance 
of the dynamics during the readout process of neural networks. 

K Y M Wong and C Ho 

2. Formulation 

We proceed by considering a network of N neurons Sj = f l .  Each neuron is fed by C 
other neurons chosen randomly, and coupled from neuron j to neuron i through the synaptic 
weights J i j ,  where Jj j  satisfy the spherical constraint zje,(i) J i  = C; J ( i )  being the set 
of C randomly chosen neurons coupled to neuron i. Only parallel dynamics with Gaussian 
noise [13] will be considered in this paper: 

where z i ( t )  is a random Gaussian number of mean 0 and width I ,  and Tn is the retrieval 
noise temperature measuring the amount of stochastic noise present in the updating dynamics 
of the network, Alternatively. one may consider the use of discrete noise [3] instead of 
Gaussian noise, but the results are essentially the same. 

The values of the synaptic weights J,j are assigned during the learning process [ I ]  so 
that a set of p patterns $,!’ = & I ,  j = 1 . . . N and /* = 1 . .  . p can be retrieved. The actual 
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prescription for the synaptic weights Jij depends on the individual learning processes. It 
turns out, at least for the dilute asymmetric neural networks on which we will focus our 
discussion, that the dynamics for the retrieval of a single pattern, say pattern p. is completely 
determined by a knowledge of the aligning field distribution p ( A )  given by 

where A: = 6: cj J,,.$/d? is the aligning field of pattern p at neuron i. By varying 
the details of the learning process, one may adjust the aligning field distribution, and hence 
obtain different structures of the retrieval attractors. In appendix A we illustrate this by 
controlling the noise level present in the training data. In the low training noise limit, 
the resultant network is the maximally stable network (MSN) [9-1 I]. whereas in the high 
training noise limit, one recovers the Hebbian network [2]. 

Retrieval of a pattern, say pattern I ,  is monitored by observing the evolution of an 
(instantaneous) overlap order parameter m ( t )  given by 

(2.3) 

In general, m(t) approaches a fixed point value m* in the asymptotic limit. A non-zero 
value of the attractor overlap m* corresponds to the retrieval phase. However, when the 
storage level (Y p / C  is greater than a critical value aC, m* vanishes corresponding to the 
non-retrieval phase. aC is therefore the storage capacity of the network. 

Further information on the retrieval attractor can be obtained by monitoring the activity 
at a neuron i, which is defined as the time average of its projection on pattern 1 in the 
asymptotic limit 

Note that both the overlap and the activity involve the averaging of the same arguments; the 
difference is that in the overlap they are averaged over neurons for a fixed time, whereas 
in the activity they are averaged over time for a fixed neuron. As a result this provides 
information on the fraction of time a neuron remains firing or non-firing, and hence its most 
probable state, as well as the structure and size of the attractor. For instance, ai = & I  
corresponds to a neuron always retrieving the correctfincorrect pattern bit asymptotically, 
i.e. it is 'frozen'. Alternatively, this implies that the attractor is restricted to the (N - 1)- 
dimensional subspace with Si = in the N-dimensional space of network states. An 
attractor with many frozen spins (or nearly frozen ones) is therefore a small attractor. We 
note that our definition of activity is slightly different from Derrida's 171, which involves 
averaging over an ensemble of initial conditions instead of averaging over an extended 
period of time in the asymptotic limit; if the elements in the ensemble of initial network 
states belong to different attractors, the two definitions may lead to different values of the 
activity. 

In the thermodynamic limit one may be more interested in the activity distribution. The 
probability distribution Q(a) of local activities is defined by 
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Thus the activity distribution of a point attractor consists of two delta peaks at a = rt l .  
This means that the neurons are spending all of their time in the state of comctlincorrect 
pattern bits. On the other hand, the activity distribution of the attractor in the high- 
temperature paramagnetic phase consists of a single delta peak at a = 0, since thermal noise 
is flipping the neuronal states randomly. Furthermore, i t  turns out that at low temperature 
it is possible to have the activity distribution diverging as the activity approaches & I .  i.e. 
limo+*, Q(a) = 00 [7]. This corresponds to a phase with partially frozen spins. On 
the other hand, if the activity distribution does not diverge in these limits, the system has 
unfrozen spins. 

To elucidate the structure of the retrieval attractors, the notion of damage eimolution has 
been proposed 131. Here damage refers to two slightly different network state configurations 
(and does not associate with any physical damage of the network). This involves monitoring 
the evolution of two network states S,(t) and $ ( t ) ,  both subjecf fo  the same stochastic 
noise z j ( t )  in their dynamics. Damage spreads when their difference propagates on time 
evolution and heals when it vanishes. We define the stale overlap as the overlap of the two 
instantaneous network states 
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(2.6) 

and the fractional state damage is given by dx = (1 - rs)/Z. rr = I is always a fixed point 
since this corresponds to the dynamics of a single network state. However, this fixed point 
may either be stable or unstable, corresponding to the cases of damage healing or spreading, 
respectively. 

In the case when damage spreads, one may conclude that the attractor is either a 
single attractor or a cloud of attractors. In this paper we propose new techniques to 
extract more information on these two possibilities. (We refer to chaotic dynamics with its 
unpredictability as manifested by damage spreading, which is different from noisy dynamics, 
which refers to the presence of stochastic noise z i ( t )  in the update of the neuronal states.) 
We will consider the evolution of the activity damage. This is the equivalence of the notion 
of the state damage evolution with respect to instantaneous network states, in w,hich we 

'monitor the overlap of the activities of two evolving network states in their respective 
attractors, and measure whether they converge to each other or not. One may define the 
activity overlap of the network states & ( t )  and &(t)  given by 

where ( . ) i  represents averaging over all neurons. Again, r, = (a:)i or ( @ ) j  is always a 
fixed point since this corresponds to the dynamics of a single network state. However, 
when this fixed point is unstable, arbitrarily close network states will flow towards different 
attractors, and the possibility of a single attractor is excluded. Note that the converse may 
not be valid, for it is possible to have two different attractors but with identical activities 
for their neurons. An example is shown in table I. in which the neuronal states in two 
distinct attractors may have the same fraction of + I  and - I  states, but arranged in different 
sequences. Thus the stability of the fixed point Til = (a,?)i is a necessary but not sufficient 
condition for a single attractor. 

To further differentiate single and multiple attractors by examining their sequence of 
neuronal states, we introduce the notion of temporal correlation damage. Here we monitor 
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Table 1. An example of network states having the same activity for neuron i, namely ui = f. 
but may belon to different amactom. Herr all m ” n  U? limit cycles of period 6. Comparing 

and S / ” ( f ) ,  damage spreads and they belong to different attractors although U,“’ = o:~’. 

f T t I  T t 2  T t 3  7 + 4  T + 5  T + 6  

S / ” ( t )  and Si 8, (I), damage spreads but they belong to the same atfnctor. Comparing S!”(r) 

the time correlation functions of two evolving network states in their respective attractors, 
and measure their differences. Consider correlation overlaps given by 

where ~ ~ ( 7 )  are temporal correlation functions given by 

The necessary and suffcient condition for the adjacent network states Si ( t )  and j i ( t )  to 
belong to a single attractor, rather than a cloud of attractors, is that r&) = ( ~ 3 7 ) ) ~  is a 
stable fixed point for all values of 5. 

3. Damage evolution 

Consider two network states Sj(t)  and &(t)  subject to the same stochastic noise and 
both having macroscopic overlaps m( t )  and rk(t). respectively with pattern 1, and only 
microscopic random overlaps with the other patterns. These instantaneous overlaps at 
successive time-steps are related, on using (2.3) and (Z.l), by 

where we have used the fact that t i z i ( t )  and z j ( t )  obey the same distribution. Noting that 
the averaged value of S j ( t )  is mt,! and introducing the notation A; for the aligning field in 
(2.2). we obtain 

1 
m(t + I )  = - z s g n  [m(t)A! + X i @ )  + T,zi(t)] 

N i  

where X i ( ! )  = 
Gaussian variable of mean 0 and width 

C j  J i j ( S j ( f )  - m ( t ) t ; ) / f i ,  In the limit C >> I, X i ( t )  becomes a 
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For input states with no further correlations than those specified by the overlap m ( t ) ,  non- 
vanishing contribution to (3.3) only comes from terms with j = k ,  and, since ( J 2 ) i  = 1, 
we have = 1 - mz. Thus, on performing the averaging over neurons i in (3.2), 
we arrive at the recursion relation 

K Y M Ubng and C Ho 

'! 

(3.4) 

and a similar expression for &(t+ 1). In general, this recursion relation cannot be extended 
beyond one time-step, since correlation between network states of various time-steps will 
be involved. However, for dilute asymmetric networks with In C << In N, correlations 
beyond one time-step can be neglected and (3.4) can be extended to an arbitrary number of 
time-steps [P-II] .  Henceforth this is the case we focus on. 

For state overlap rS(t)  between the two states, the state overlap for the next time-step 
is derived in appendix B by the standard techniques of introducing integral representations 
for delta functions, factorizing and then performing pattern average. Here we present a 
more direct derivation when C >> I .  Using the definition of state overlap (2.6) we write, 
in analogy with (3.2), 

where X i @ )  and 2i(t) are defined as in (3.2) for the network states Si@) and ,?i(t). Hence 
( X i ( t ) ) i  = (f;(r))i = 0 and 

( ~ i ( t ) ' ) i  = I - mz(t )  (2itt)')i = I - f i 2 ( t ) .  (3.6a) 

Furthermore, correlation exists between X i @ )  and f ; ( t ) ,  since 

Again, for random input states with no further correlations than those described by m(t) ,  
h(t) and rs ( t ) ,  non-vanishing contribution only comes from terms with j = k, yielding 

(xi(t)*i(t)), = rs ( t )  - m(r)f i ( t ) .  (3.6b) 

This implies that X i ( r )  and can be expressed as a linear combination of two 
independent Gaussian variables II  and U. A choice of their coefficients consistent with 
the correlations (3.6~) and (3.6b) is given by 

where rk = (rs - m k )  fd(l - mZ)(I - e*). (Note, however, that the above decomposition 
is not unique. For example, it is algebraically more convenient in some cases to write 
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X , ( t )  = -K and gz(t )  = -(qsu + m u ) . )  Averaging over neurons i in 
(3.5), we arrive at the recursion relation 

rs(t + 1 )  = / d A  p ( A )  / D z /  Du / Dv 

where Dz is the Gaussian measure introduced in appendix A. 
In the asymptotic limit, m(t )  and 6(t) approach the attractor overlap m'. It is easily 

shown that r, = 1 is a fixed point, corresponding to the dynamics of a single network 
state. However, this fixed point is unstable, as can be shown by the expansion around 
rs ( t )  = 1 - E ,  

(3.9) rs(t + 1 )  = 1 - - n ,/"/dA 1-m2+TZ p ( A )  exp (- 2( 1 - m2 f T:) 

This implies that damage in network states spreads for all temperatures. Note that this 
behaviour is different from that observed in finite-dimensional spin systems, in which 
the system undergoes a dynamical phase transition to a healed damage phase when 
the temperature increases [14]. Nevertheless, the magnitude of the damage vanishes 
asymptotically in the high-temperature limit, irrespective of whether the system is in retrieval 
or non-retrieval phase, since 

(3.10) 
8 

lim rf = 1 - - 
T">l nZT2 ' 

This shows that the retrieval attractor is either a chaotic attractor or a cloud of attractors. 
The TL2 dependence of state damage is also found in the case of discrete noise, and it is 
interesting to note that the state damage has the same temperature dependence in the SK 
model [E]. 

Although damage spreads for all storage levels in the retrieval phase, the degree of 
chaoticity does increase with the storage level, as measured by the coefficient of f i  in (3.9). 
For example, in the Hebbian network, substitution of the aligning field distribution (AA) 
reduces (3.9) to 

(3.11) 

and the coefficient of ~ ( t ) " ~  increases from 0 at 01 = 0 to ( 2 / n ) J m  at 01 = 0 1 ~ .  

4. The activity distribution 

The activity distribution provides further information on the degree of chaoticity of the 
attractor. Consider the activity of neuron i, which is given by [7] 
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where ai(?) is the activity of node i over T time-steps starting from the instant t ,  and the 
limit T -+ 00 is taken. The activity distribution can therefore be determined, in dilute 
networks, by the recursion relation 
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In the asymptotic limit Q(a, P) approaches a fixed point distribution e.@). This equation 
can be simplified using techniques developed in appendix B. but again, we present a more 
physical derivation here. Consider first the activity ai(t + I), which can be written as 

(4.3) 

where Y j ( t )  
T time-steps. Y;( t )  is a Gaussian variable with mean (Yj ( t ) ) [  = 0 and width 

E, &' J j j ( S j ( t )  - a j c / ) / a ,  and (.), represents averaging over a period of 

1 
(Yi(t)')t = c x J i j J i k ! [ S j ( t )  -ajEj!l[Sk(t)  - akk$])t 

1.I 

Non-vanishing contribution only comes from terms with j = k ,  yielding (Y i ( t )2 ) t  = 
1 - E, J&$/C. Note, however, that in dilute asymmetric networks uj depends on the 
neurons and synapses feeding neuron j ,  and is therefore independent of Jj j .  which is 
emanating from j to i. Hence (J ia j ) j  = (J ; ) j (a j ) j ,  leading to 

(Y, (r)*),  = 1 - q (4.4) 

where q = (a&. Y i ( t )  represents the dynamic contribution of the disorder to the activity. 
For example, ( Y i ( t ) z ) t  = 0 when all spins are frozen, and (Y(( t ) ' )[  = 1 in the paramagnetic 
phase. Performing the temporal averaging in (4.2) we obtain 

Next we consider the numerator in the expression (45), which can be written as 

(4.6) 

where Vi = Zj E) Jjjcj! (aj - m ) / f i .  Vi is a Gaussian variable with (Vi)i = 0 and 

Again, the non-vanishing contribution only comes from terms with j = k, rendering 

(4.7) ( v f ) j = q - m  2 
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where Vi represents frozen disorder. For example, (V:)c = 0 in the paramagnetic phase, 
and (y2 ) i  reaches its maximum value of 1 - m2 when all spins are frozen. In fact, for a 
given time-step, the disorder term X,(t) in the instantaneous overlap update (3.2) is merely 
the sum of the dynamic component k',(r) and the frozen component Vi, since the distinction 
between the two is irrelevant within one time-step. Performing the averaging over neurons 
i we arrive at an equation Q(a) in the asymptotic limit 

Q(a) = / . d h p ( h ) / . D y S [ e r f ( m h C ~ y )  J2(1 - 4 + T,Z) - a ] .  (4.8) 

The parameters m and q are the first and second moments of the activity distribution, which 
can be determined self-consistently from 

(4.9) m = 1 da Q(a)a q = 1 da Q(a)a2 .  

Note that the first moment is merely the atvactor overlap, hence the notation m .  For the 
Hebbian network one may substitute the aligning field distribution (A.8) and recover the 
results of Derrida [7]. Here we have generalized the result to networks with an arbitrary 
aligning field distribution. 

Derrida found that for the Hebbian network the activity distribution in the limits a -+ &I 
behave differently when the storage level varies. For low storage levels the activity 
distribution at the retrieval attractor diverges at a = 51,  corresponding to a partially frozen 
phase. When the storage level is sufficiently high, the divergence disappears, corresponding 
to an unfrozen phase, although pattern retrieval in this phase is still possible. Since the 
presence of flipping spins may be considered as a measure of the degree of chaoticity of 
a dynamical system, the transition from the partially frozen to unfrozen phase shows that 
the system becomes increasingly chaotic with the storage level. This provides an another 
measure of chaoticity in addition to the damage evolution. 

However, the unfrozen phase is not necessarily present in networks other than the 
Hebbian network. In fact, in the MSN, patterns can be stored perfectly up to the retrieval 
storage capacity aC = 2 in a dilute asymmetric network architecture at Tn = 0 [ 5 ] .  This 
shows that the retrieval attractor is a point attractor throughout the retrieval phase of the MSN, 
i.e. the spins are completely frozen. One may interpolate the two extreme behaviours of 
the MSN and the Hebbian network by controlling the noise level present in the training data 
[12]. Extensive studies on the associativity, retrieval precision, storage capacity, selectivity, 
robustness against weight dilution and temperature, and the weight space organization of 
these networks show that the basin structure can be tuned by the training noise, as described 
by the training overlap m, in appendix A [12]. When the network is optimally trained with 
very noisy data (m, + 0), the basins of the retrieval attractors are wide and interfering, 
corresponding to high associativity, high robustness against weight dilution and temperature. 
but low precision, low storage capacity and low selectivity, as exemplified by the Hebbian 
network. It is therefore expected that, when the training noise level increases from the MSN 
limit (ml -+ 1) to the Hebbian limit (ml + O), the unfrozen phase will be increasingly 
significant, signalling the increasing degree of chaoticity as the retrieval basins widen. 

rt1 
The condition for the existence of the partially frozen phase can be easily obtained from 

the activity distribution Q(a)  in the limit a -+ kl. Introducing z = e f i ' n ,  equation (4.8) 
reduces to 
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I , I  
0 9  0.4 0.8 0.11 1 .O 0.0 

0.0 
D 

Figure 1. The phase diagram of the anractor smctw in the space of the training overlap ml 
and the storage level U Y T. = 0. In figures I and 2. PF. UF and NR repment the partially 
frozen, unfrozen and non-reuievd phases, respectively. 

D 

Figure 2. The phose diagram of the mactor smctllre in the space of the storage level U and 
the temperature Tn for the Hebbian network. 

For the neural networks satisfying the generic condition limlrl-,m A ( t ) / f  = 1 in (A.4), this 
yields 

(4.11) 

Thus the transition between the partially frozen and unfrozen phases takes place at 

q = +(I + T,z). (4.12) 

Figure I shows the phase diagram in the space of the storage level (Y and the training overlap 
m, at T, = 0, assuming that the network is replica symmetric in the weight space [12]. The 
retrieval phase is further divided into the partially frozen phase at low storage level and 
unfrozen phase at higher storage level. Note, however, that for sufficiently low training 
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noise (mt > 0.551, no unfrozen phase is present showing that the retrieval attractors are 
less chaotic. This is consistent with the narrowing of the retrieval basins with increasing 
precision in the low training noise limit. 

To demonstrate the effects of temperature, figure 2 shows the phase diagram in the space 
of the storage level o( and temperature T, for the Hebbian network. The unfrozen phase is 
present at all temperatures, whereas the partially frozen phase is present only for T, < I .  

5. The biconfigurational activity distribution and the activity damage evolution 

To study further the structure of the attractors we again consider two network states Si@) and 
$ ( t )  both subject to the same stochastic noise and monitor their joint activity distribution. 
The biconfigurational activity distribution is defined by 

In analogy with (4.2), a recursion relation for this distribution can be obtained as 

(5.2) 

Using techniques similar to the derivation of (4.8), we can show that the fixed-point 
distribution Q(a,  2) at T,, = 0 is given by 

e@,;) = /"dAp(A)/"Dn/Du 

m A  + +-U) 
x G[erf( 8F3 

where qa = (Fa-mFi)/d(q - m Z ) ( i  - h2), and r, 
It is determined self-consistently by 

is the activity overlap in (2.7). 

r, = d a d 2  Q(a, ci)a2. (5.4) 

If the network states S; ( t )  and j ; ( t )  belong to the same attractors, m, lir and q ,  converge 
to the same fixed points m* and q*, respectively, as given by (4.9). The biconfigurational 

s 
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activity distribution is then completely determnined by m, q and ril. The asymptotic value 
of r, is therefore given by 
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where qa = (r,-m2)/(q -d). When r, = q ,  (aiZi)i = {a,?)i = (Z,?); and the configurations 
Si@) and .$(I) become identical. It can easily be verified from (5.5) that r, = q is indeed 
a fixed point. To study the stability of this fixed point, we consider the Taylor expansion 
of (5.5) around r, = q ,  yielding 

(5.6) 

This may be compared with the Taylor expansion of (4.9) around the stable fixed point 
q = q*, which reads 

x (q - 4* )  + O(q - 4’Y. (5.7) 

It turns out that both expansions have the same first-order coefficient. Hence we deduce 
that ra = q is always a stable fixed point. This shows that in the retrieval attractor, activity 
damage heals, although state damage spreads. This indicates that the retrieval attractor may 
be a single but chaotic attractor, as will be argued in the following section. 

6. The temporal correlation damage evolution 

To verify that the retrieval attractors are indeed single attractors, we have to consider the 
correlation overlaps (2.8) for all time intervals t, It turns out that in dilute asymmetric 
networks, it  is more convenient to consider the temporal correlation of a neuron with its 
‘ancestor’ 5 time-steps before, instead of the local correlation (2.9), i.e. 

where j E Jr( i ) .  For dilute asymmetric nehvorks, cjj can be expressed in terms of the 
activities ai and aj. The example of 5 = 1 is given in appendix C. 

We can now generalize the argument to two evolving configurations S(I )  and S ; ( t ) .  
Since we have verified that r, = q in the attractor, a; = 21 for all neurons. Since c;j(r) and 
& j ( ~ )  are determined by ai, a, and Cii, Z j ,  respectively, we conclude that ci,(r) = Eij(s) for 
all values of r .  Hence the two configurations belong to the same attractor, More precisely, 
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the attractors of the two configurations are indistinguishable to the order of a fraction of CO 
neurons when a finite number of time-steps is being monitored. 

Although the spreading of state damage implies that the dynamics is chaotic, the unique- 
ness of the attractor for each stored pattern implies that it  is compact in dilute asymmetric 
neural networks, in contrast to the existence of strange attractors in low-dimensional sys- 
tems. This can be seen by considering network states which differ by a finite number of 
neuronal states. In the thermodynamic limit the stability of the dynamical equation for the 
overlap m implies that they both converge to the retrieval attractor, which is unique. 

7. Enhanced retrieval by activity averaging 

The study of the activity distribution leads to a very useful application, namely that by 
averaging the evolving network states over an extended period in the attractor, the stored 
patterns are retrieved much better than by monitoring the instantaneous network states as 
described by the usual overlap order parameter. This means that during the retrieval process, 
one first allows the system to equilibrate, and then monitors the time-averaged state of each 
neuron. The output state & I  on each neuron is then determined according to the sign of 
the time-averaged state, The resultant overlap m, is referred to as the clipped activiry. Its 
value is given by 

m , = / c i a e ( a ) s g n a .  (7.1) 

Substituting (4.Q we have 

m, = /dhp(h)er f (  mA ) 
m. (7.2) 

this corresponds to the output overlap for an effective input overlap 
the right-hand side of (3.4) is an increasing function of m, this 

guarantees an increase of overlap from m' to ma. Furthermore, since activity damage heals, 
the pattern retrieved by activity clipping is unique for a sufficiently long monitoring period. 
Figure 3 compares the clipped activity with the instantaneous overlap for the Hebbian 
network at Tu = 0. 

U 

Figure 3. The dependence of the instantaneous overlap (ov) and the time-averaged overlap (or 
the clipped activity CA) on the storage level (Y for the Hebbian network at T, = 0. 
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This enhancement in the overlap is most dramatic immediately below the storage 
capacity. Consider the family of networks for which the instantaneous attractor overlap 
undergoes a continuous transition at the storage capacity a,; this can be achieved for a 
training overlap mt less than 0.48 [ 121. By considering the fixed-point equations (4.9) near 
a,, we have 

This implies that both the mean and the width of the activity distribution (4.8) approaches 
zero with a constant ratio, so that the fraction of neurons with the correct sign of their 
activities is fixed. For the Hebbian network, for example, (Az) = ir/2 + 1 by (A.8). Thus 
on substituting (7.3) into (7.2) for T, = 0, 

m,=erf - = O S .  ("1") (7.4) 

This is a significant improvement in retrieval, for the clipped activity now undergoes a 
discontinuous transition at the storage capacity G. 

Encouraged by the performance of the above time-averaged procedure, we propose a 
selectivefreezing procedure for further improvement. We note that the activity distribution 
is highly asymmetric with respect to a change of sign of the activity. This means that 
those neurons with large magnitude of activity are much more likely to be aligned with 
the correct patten bits. The selective freezing procedure makes use of this fact. Here one 
allows the system to equilibrate and then monitors the time-averaged state on each node. 
Nodes with the magnihlde of the timeaveraged state exceeding a given threshold value 
are then assigned a state f l  according to the sign of the time-averaged state. The states 
of these nodes become fixed in the subsequent procedure. In the next stage, one again 
allows the system to equilibrate with the rest of the nodes dynamic, and the output states 
are determined by clipping the time-averaged states as before. While further details will 
be reported elsewhere, here we report that this method can produce a jump in the retrieval 
overlap as high as 0.59 at the retrieval to non-re@ieval transition for the Hebbian network 
at T ,  = 0. 

8. Discussion 

In this paper we proposed a number of probes to understand the nature of attractors in 
dynamical systems. These probes are: (i) the activity distribution; (ii) the evolution of the 
state damage; Cui) the evolution of the activity damage; (iv) the evolution of the temporal 
correlation damage. These quantitites of interest are applicable to both simulational and 
analytical approaches to the dynamics of neural networks, both dilute or more extensively 
connected, as well as general complex dynamical systems and spin glasses. Here we 
illustrate their applicability to an exactly solvable case, namely the case of dilute asymmetric 
neural networks. These notions find a direct application in retrieval enhancement procedures 
making use of time-averaged states on each node. Activity clipping and selective freezing 
greatly improve the precision in retrieval, even in the vicinity of the storage capacity. 

Using these probes we observed that the degree of chaoticity of the retrieval attractors 
increases with the storage level as well as the level of training noise, which is associated 
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with a phase transition from the partially frozen to unfrozen phase. The tuning of the 
chaoticity of the attractors is consistent with the variation of the size of retrieval basin by 
adjusting the level of training noise previously studied in neural networks. 

For networks with adaptable weights, Hebb learning proceeds by the synaptic 
modification rule AJ;j - aiaj, our study on activity distribution has two further implications. 
First, when the network state falls into a retrieval attractor for a sufficiently long time, the 
synaptic modification is unique, since activity damage heals in dilute asymmetric networks. 
Secondly, when the storage capacity is near saturation, the network is in an unfrozen phase 
with lower magnitudes of activity, and Hebb learning by activity correlation becomes hard. 
On the other hand for lower storage levels, the network is in the partially frozen phase, and 
Hebb learning is effective. This provides a mechanism to guarantee the quality of patterns 
to be learned, for when patterns are learned, they are learned with generally high quality, 
whereas poorly retrieved patterns near saturation are not effectively learned. 

These probes also enabled us to demonstrate that the retrieval attractors in dilute 
asymmetric networks are single chaotic attractors. We may compare this result with that 
in dilute symmetric neural networks [I61 in which replica symmetry breaking effects are 
significant, corresponding to the existence of multiple attractors. 

This comparison shows that the symmetry of the node couplings determines the attractor 
structure of the system, namely that asymmetric couplings result in more chaotic attractors, 
which, however, exist in a single valley around each stored pattern; on the other hand 
symmetric souplings result in less chaotic attractors, which, however, may be clustered in 
different valleys. 

This observation is consistent with previous findings in spin systems of other 
architectures, which show that dynamical systems become increasingly chaotic with coupling 
asymmetry, often with larger but fewer attractors. They are observed in fully connected 
asymmetric spin glasses [17-191, asymmetric neural networks with soft spins for both 
connected [ZO] and highly diluted [21] architectures, layered neural networks [22] and the 
Kauffman model [23]. 

It is interesting to compare our results with the simulation of three-dimensional spin 
glasses [14], in which three possible phases have been observed: (i) a high-temperature 
T > TI regime in which state damage heals; (ii) an intermediate-temperature regime 
T, < T < TI in which damage spreads, but the asymptotic state damage is independent 
of the initial state overlap; (iii) a low-temperature regime T c Tz in which state damage 
spreads, and the asymptotic state overlap depends on the initial state overlap. The transition 
temperature T, is generally recognized as the spin-glass temperature, whereas the transition 
at TI is identified as a dynamical phase transition. In dilute asymmetric neural networks we 
find that only the intermediate phase is present. We have already excluded the possibility 
of many attractors characteristic of the low-temperature spin-glass phase, by considering 
the evolution of activity damage and temporal correlation damage, and we attribute this to 
the asymmetry of the couplings. On the other hand, the high-temperature damage-healing 
phase is absent, probably because dilute asymmetric networks lack the strong correlations 
of finite-dimensional systems, which may drive them towards ordered behaviour. This is 
consistent with a comparative study of dynamical phase transitions in short-ranged and 
long-ranged neural network models [241. 

Although in this paper we only considered dynamical systems with binary states, the 
techniques can be generalized to networks made up of spins or neurons with multi-states 
or continuous states, except that the formulation may be more complicated. In these cases 
the activity distribution is generalized to the joint distribution Q(a, 6) in neural networks, 
where a is the time-averaged state and 6 is the pattern state on the same node; damage 
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evolution (whether state, activity or temporal correlation) can be studied by monitoring the 
Hamming distance in the phase space. 

K Y M Wong and C Ho 
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Appendix A. Aligning field distribution in neural networks optimally trained with noisy 
data 

In this appendix we summarize the results derived in [4] for the aligning field distribution 
in neural networks optimally trained with noisy data. The noise level in the training data 
is specified by the training overlap m,, which defines the probability distribution of the 
example pattern bits ( R T ” ]  as 

P(R;”) = ;(I + m , ) G ( R ; ” - ~ ~ ) f ~ ( l - - m , ) S ( R ~ + ~ ~ ) .  (A. 1 ) 

When this set of training data is used, learning can he considered as the optimization of the 
performance function E, g(Ar)  for each neuron i, where 

For an arbitrary form of the performance function g(A) ,  the aligning field distribution is 
given by 

p(A) = Dt6(A - h( t ) )  s 
where D t  = exp(-t2/2)dt/& is the Gaussian measure and h ( f )  is the value of h which 
maximizes the expression 

g(h)  - (A - OZ/2y (A.4) 

and y is the susceptibility parameter determined by the condition 

1 Dt (A@) - t )*  =a-’ . (A.5) 

In the low training noise limit, the resultant network is the MSN whose aligning field 
distribution is given by 

e-A‘lZ 
S(A - K )  + @(A -K ) -  

& 
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where K is the stability parameter given by 

Dt(K - t)* =a-’. (A.7) L 
In the high training noise limit (m, + 0), one obtains the Hebbian network whose aligning 
field distribution is given by 

For intermediate training noise levels, one may obtain a one-band or two-band aligning field 
distribution. 

Using (3.4), the aligning field distribution allows us to determine the attractor overlap 
m* and hence the storage capacity 01, for dilute asymmeaic networks. For example, the 
attractor overlap of the Hebbian network is given, on substituting (A.8) into (3.4), by 

Hence the value of cu, is 2/(a(l + 7‘:)) for the Hebbian network. Similarly, for the MSN, 
0 1 ~  = 2, making use of (A.6) and (3.4). For intermediate training noise levels crC is computed 
in [12], and reproduced in figure 1 as the phase boundary of NR. 

Appendix E. Recursion relation for the state overlap rS 

In this appendix we derive the recursion relation for the state overlap r&). The state overlap 
at time I + 1 is given by 

(B.1) 
Introducing delta functions for A = xj  $ S j ( t ) / f i  and = xj  J i , j j ( i ) / f i ,  and then 
using integral representations for the delta functions, we obtain, after factorizing over the 
neurons, 

Averaging over Sj(t)  and J j ( r ) ,  we obtain 
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Introducing the aligning field A; = cj 6) J i j . $ ] / J d ,  and using the quadratic identity 

together with the HubbardStratonovich identiv 

eal/z = D ~ ~ W  J 
this reduces to 

Averaging over the thermal noise, and using the definition of the aligning field distribution 
(2.2), we arrive at  (3.8). 

Appendix C. Temporal correlation for r = 1 

In this appendix we derive the temporal correlation cj j ( l )  in terms of the activities ai and 
aj for Tn = 0. Consider the correlation function in which neuron i is fed by neurons 
k = 1 . . . C including j .  Then 

Following an averaging procedure over the neurons k # j similar to that in section 4 or 
appendix B, we obtain 

Comparing this expression with the product aiaj using (4.5). we obtain, on subtraction, 

To order l i e ,  this yields 

Therefore the correlation c i j ( l )  is completely determined by the single neuron activities. 
This argument can be generalized to correlations for other values of T. 
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